RTCA Free Flight Select Committee Safe Flight 21 Steering Committee

Eurocontrol ADS Programme

ADS-B Technical Link Assessment Team (TLAT)

Technical Link Assessment Report March 2001

APPENDIX K - Attachment 3

1090 MHz Extended Squitter Simulation Results DERA/SIEM Model

Frankfurt Validation

Slide 2

Approach

- SIEM scenario replicated Frankfurt environment
 - Not fully possible due to lack of data
- Compare simulation outputs to recorded data

Slide 3

Frankfurt Assumptions

- Aircraft number should be the same, but DERA report significant difference
- Ground interrogator database =German database + RASCAL for other states
- TLAT antenna gain model
- Receiver of interest is advanced
 - Other receivers are today's specification

Results - 1

1030 MHz Interrogation Rate (Measured on-board FAA N40 aircraft).						
Interrogation Type	Measured (Fran	kfurt Trial)	SIEM Modelling			
microgation Type	Rang e Mean		SILM Modelling			
Mode A/C	250 to 650	350	416			
Mode S	100 to 450	250	25			

- •Goetzenheim and other experimental Mode S radars not included in SIEM
- •Underestimate number of TCAS aircraft?

Slide 5

Results - 2

Mode A/C (ATCRBS) FRUIT (Measured on -board FAA N40 aircraft).							
Receiver Sensitivity	Measured (Frank	furt Trial)	SIEM Modelling				
Receiver Benshivity	Range	Mean	BILIM Wodening				
-84dBm	15 000 to 30 000	22 000	72 518				
-79dBm	6 000 to 12 000	9000	33 433				
-74dBm	2 500 to 5 200	4000	14 314				

- •SIEM overestimated aircraft numbers?
- •Limitations in N40 receiver?

Slide 6

Results - 3

Mode S FRUIT (Measured on-board FAA N40 aircraft).						
Receiver Sensitivity	Measured (Fran	kfurt Trial)	SIEM Modelling			
Receiver Sensitivity	Range	Mean	SILW Wodering			
-84dBm	750 to 1250	1000	576			
-79dBm	300 to 700	500	275			
-74dBm	150 to 500	300	133			

- •Goetzenheim and other experimental Mode S radars not included in SIEM
- •Underestimated number of TCAS aircraft?

Results - 4

Passive Receiver performance (on board FAA N40 aircraft vs. Beech King)						
Range (Nm)	Measured (Fran	nkfurt Trial)	SIEM Modelling			
Kange (Mii)	Range	Mean	SIEW Wodening			
10	65 to 95%	80%	68%			
20	30 to 85%	55%	10%			
40	55-80/10 -20%	68% / 15%	1%			
80	30-45/8-15%	35% / 10%	-			
120	0 to 12%	5%	-			

SIEM overestimated aircraft numbers? (short range OK, long range poor)
Similar results for N40 vs Metroliner

Slide 8

Results - 5

Langen Passive Receiver (66 degree sector) performance (vs. Beech King)						
Range (Nm)	Measured (Fran	kfurt Trial)	SIEM Modelling			
C (IVIII)	Range	Mean	SILW Wodering			
10	75 to 100%	88%	99%			
20	78 to 85%	82%	87%			
40	60 to 90%	75%	50%			
80	25 to 72%	55%	-			
20	0 to 12%	8%	-			
	e (Nm) 10 20 40 80	Measured (Fran Range 10 75 to 100% 20 78 to 85% 40 60 to 90% 30 25 to 72%	Measured (Frankfurt Trial) Range Mean 10 75 to 100% 88% 20 78 to 85% 82% 40 60 to 90% 75% 30 25 to 72% 55%			

•SIEM overestimated aircraft numbers? (short range OK, long range poor)

Slide 9

Reasons for Divergence - 1

- Uncertainties in:
 - Non-German ground radar interrogators (Civil and military) (Especially PRFs)
 - Aircraft parameters (SIEM assumes all aircraft operate in specification)
 - Proportion of Mode S/TCAS equipage
 - Antenna gain model (unvalidated)
- Goetzenheim and other Mode S radars not in SIEM

Reasons for Divergence - 2

- SIEM assumed 400 a/c within 150 nm
 - Frankfurt data shows 250 a/c within 150 nm
 - Would reduce FRUIT rate by 30%
- Potential for FRUIT garble in measurements
 - SIEM does not include this
 - DERA suggests it would reduce FRUIT rate to 40%
 - Depends on N40 implementation

Slide 11

Adjusted Results

Mode A/C (ATCRBS) FRUIT (Measured on -board FAA N40 aircraft).						
Measured (Frankfu	ırt Trial)					
Range	Mean	traffic and decode				
		30% traffic reduction	40% decode prob.			
15 000 to 30 000	22 000	55 800	22 320			
6 000 to 12 000	9000	25 700	10 280			
2 500 to 5 200	4000	10 800	4 320			
	Measured (Frankfu Range 15 000 to 30 000 6 000 to 12 000	Measured (Frankfurt Trial) Range Mean 15 000 to 30 000 22 000 6 000 to 12 000 9000	Measured (Frankfurt Trial) Range Mean SIEM Modelling with traffic and decode 30% traffic reduction 30% traffic reduction 15 000 to 30 000 22 000 55 800 6 000 to 12 000 9000 25 700			

Slide 12

Summary

- Frankfurt measurements vs SIEM model
 - Interrogation rates close or differences explainable
 - FRUIT rates too high, but differences may be exlpainable
 - More study needed to understand environment

Page 5

Analysis of 2015 European Scenario Results

Slide 14

Main Assumptions

- 2015 aircraft and ground interrogator scenario
- Advanced 1090 decoder model
- TLAT antenna gain model
- Transmission of 4 TCPs by A3
 - (each every 1.7s total transmission rate rises to 7.4 extended squitters/sec)
- A0/A1/A2/A3 altitude split

Slide 15

Advanced Decoder

DERA implementation in place of JHU model

Prob. Mode A/C decode (no interference): 1

Prob. Mode A/C decode (1 ATCRBS interfere): 0.75

Prob. Mode A/C decode (2 or more ATCRBS interfere): 0.5

Error detection time: 50us

Max. number of synchronous replies: 3

Prob. Mode S decode (no interference): 1

Prob. Mode S decode (1 interference): 1

Prob. Mode S decode (2 interference): 0

Receiver desensitisation: -3dB

Slide 16

Receivers Modelled						
Receiver type	Height	Antenna (s)	Diversity?	MTL at		
A (ground omni)	30 ft	Omni	n/a	-84 dBn		
B (ground directional)	30 ft	60° sector	n/a	-84 dBm		
C (airborne A3 advanced)	30,000 ft	Top: 4 sector forward looking TCAS Bottom: omni	yes	-84 dBm		
D (airborne A0 basic)	15,000 ft	Top: omni Bottom: omni	no	-72 dBn		
E (reference)	30 ft	2.4°	n/a	-84 dBn		
Although the TCAS antenna is sectorised, it receives squitters as an omni						

Slide 20

Monte Carlo Simulation

Example – SV Track Initiation

- Given Probability P of receiving squitter at range R
 - Calculate probability of receiving 4 squitters in a sample 24 s period (BDSs 05 odd & even, 08 and 09)
 - Repeat 1000 times
 - Count number of successful trials
- Repeat for different values of R

Slide 23

Tests Carried Out SV track initiation - Probability of initiation of SV before reaching application range - Requires reception of 4 e.s. within 25s (Pos, 2 Vel. + ID) SV track update - Probability of detection of update of SV report within a period vs. range - Requires reception of 2 e.s. (Pos. & Vel.) SV track drop - Track drop occurs if no e.s. are received for period of 25s MASPS TCP update - Requires reception of 2 e.s. TCPs within 24s Eurocontrol TCP update - Requires reception of the 4 e.s. TCPs. - 95% update probability

Slide 25

Slide 29

Slide 31

Slide 34

Slide 38

Slide 41

Slide 43

Slide 47

Slide 50

Slide 53

	SV Track Initiation				SV track update (99%)		
Run	% at 10nm (>95%)	0.165nm (<1.5s)	0.411nm (<3s)	0.165nm (<3s)	0.411nm (<7s)	<1%	Pass/ Fail
Run A Range (A0)	95.60	pass	pass	pass	pass	< 90nm	Pass
Run A Range (A3)	99.90	pass	pass	pass	pass	<75nm	Pass
Run B Range (A0)	100.00	pass	pass	pass	pass	<125nm	Pass
Run B range (A3)	100.00	pass	pass	pass	pass	<165nm	Pass
Run C Range (A0)	99.97	pass	pass	pass	pass	<75nm	Pass
Run C Range (A3)	99.97	pass	pass	pass	pass	<80nm	Pass
Run D Range (A1)	99.83	pass	pass	pass	pass	<25nm	Pass
Run D Range (A3)	99.43	pass	pass	pass	pass	<20nm	Pass
Run E Range (A0)	100.00	pass	pass	pass	pass	within data	Pass
Run E Range (A3)	100.00	pass	pass	pass	pass	within data	Pass

Test Results Aid to Visual Acquisition

	SV Track Initiation	SV track (95		SV track update (99%)		SV track drop	
Run	% at 10nm (>95%)	3nm (<3s)	10nm (<5s)	3nm (<6s)	10nm (<10s)	<1%	Pass/ Fail
Run A Range (A0)	95.60	pass	1	pass	2	< 90nm	Pass
Run A Range (A3)	99.90	pass	2	pass	2	<75nm	Pass
Run B Range (A0)	100.00	pass	1	pass	2	<125nm	Pass
Run B range (A3)	100.00	pass	1	pass	1	<165nm	Pass
Run C Range (A0)	99.97	pass	2	pass	2	<75nm	Pass
Run C Range (A3)	99.97	pass	1	pass	2	<80nm	Pass
Run D Range (A1)	99.83	pass	2	pass	2	<25nm	Pass
Run D Range (A3)	99.43	pass	2	pass	3	<20nm	Pass
Run E Range (A0)	100.00	pass	1	pass	1	within data	Pass
Run E Range (A3)	100.00	pass	1	pass	1	within data	Pass

= pass

Slide 56

Test Results Conflict and Collision Avoidance

	SV Track Initiation	SV track update (95%) SV track update (99%)			SV track drop		
Run	% at 20nm (>95%)	3nm (<3s)	20nm (<7s)	3nm (<6s)	20nm (<14s)	<1%	Pass/ Fail
Run A Range (A0)	87.60	pass	3	pass	3	< 90nm	Fail
Run A Range (A3)	99.00	pass	3	pass	4	<75nm	Pass
Run B Range (A0)	99.97	pass	2	pass	2	<125nm	Pass
Run B range (A3)	100.00	pass	1	pass	2	<165nm	Pass
Run C Range (A0)	99.27	pass	3	pass	4	<75nm	Pass
Run C Range (A3)	99.47	pass	2	pass	3	<80nm	Pass
Run D Range (A1)	36.97	pass	17	pass	25	<25nm	Fail
Run D Range (A3)	2.00	pass	72	pass	100	<20nm	Fail
Run E Range (A0)	100.00	pass	1	pass	1	within data	Pass
Run E Range (A3)	100.00	pass	1	pass	1	within data	Pass
		·	·	·	·	·	·

Slide 57

Test Results Separation Assurance and Sequencing

	SV Track Initiation	SV track (95		SV track (99		SV track drop	
Run	% at 40nm (>95%)	20nm (<7s)	40nm (<12s)	20nm (<14s)	40nm (<24s)	<1%	Pass/ Fail
Run A Range (A0)	40.90	3	16	3	23	< 90nm	Fail
Run A Range (A3)	66.00	3	9	4	11	<75nm	Fail
Run B Range (A0)	97.47	2	3	2	4	<125nm	Pass
Run B range (A3)	99.60	1	2	2	3	<165nm	Pass
Run C Range (A0)	69.53	3	8	4	12	<75nm	Fail
Run C Range (A3)	77.83	2	6	3	9	<80nm	Fail
Run D Range (A1)	fail	17	fail	25	fail	<25nm	Fail
Run D Range (A3)	fail	72	fail	100	fail	<20nm	Fail
Run E Range (A0)	100.00	1	1	1	1	within data	Pass
Run E Range (A3)	100	1	1	1	1	within data	Pass
= pass							

Page 20

Slide 59

Test Results EUROCONTROL SV Update and TCP Update

Eurocontrol SV Update						
	TCP Update					
Run	150nm (<10s)	Pass/ Fail				
Run A Range (A0)	fail	Fail				
Run A Range (A3)	fail	Fail				
Run B Range (A0)	fail	Fail				
Run B range (A3)	fail	Fail				
Run C Range (A0)	fail	Fail				
Run C Range (A3)	fail	Fail				
Run D Range (A1)	fail	Fail				
Run D Range (A3)	fail	Fail				
Run E Range (A0)	data unavailable	data unavailable				
Run E Range (A3)	data unavailable	data unavailable				

Spaaro		
Eurocontrol TCP Update		
	TCP Update	
Run	150nm (<24s)	Pass/ Fail
Run A Range (A0)	fail	Fail
Run A Range (A3)	fail	Fail
Run B Range (A0)	fail	Fail
Run B range (A3)	fail	Fail
Run C Range (A0)	fail	Fail
Run C Range (A3)	fail	Fail
Run D Range (A1)	fail	Fail
Run D Range (A3)	fail	Fail
Run E Range (A0)	data unavailable	data unavailable
Run E Range (A3)	data unavailable	data unavailable